On the Relation among γ -, η - and δ -Al₂O₃ under Hydrothermal Condition

By Goro Yamaguchi and Hiroaki Yanagida

(Received June 19, 1962)

What was formerly called simply γ-Al₂O₃ may in truth consist of the three forms of The \(\gamma - Al_2O_3 \) is usually γ -, η - and δ -Al₂O₃. obtained by dehydration of good crystalline bothmite γ -Al₂O₃·H₂O in air over 500°C¹). The crystal structure is considered to be closely related to that of spinel MgO·Al₂O₃^{2,3}) with a small amount of strongly bound water^{4,5)}, but slightly deformed tetragonally with a lattice constant a=b=7.96 and $c=7.82 \text{ Å}^{6.7}$; the (400) peak in the spinel indice in the X-ray diffraction diagram is slightly split into a The η -Al₂O₃ has been proposed⁸⁾ as a product of the dehydration of bayerite α -Its X-ray diffraction diagram $Al_2O_3 \cdot 3H_2O$. seems extremely similar to that of γ -Al₂O₃ except for the (400) peak being hardly split at all⁹⁾. The δ-Al₂O₃ has been proposed as a product of the further heating of γ-Al₂O₃¹⁰); the peaks in the X-ray diffraction diagram are somewhat sharp and have, except for the weak ones, mostly been attributed to the spinel indice. The existence of η - and of δ -Al₂O₃ as discrete forms independent of γ -Al₂O₃ has been doubted¹¹. The present authors have therefore investigated the relation among γ -, η - and δ -Al₂O₃ under hydrothermal conditions.

The starting material was obtained by the dehydration of good crystalline boehmite at The X-ray diffraction diagram 700°C in air. This was treated hydrois that of γ -Al₂O₃. thermally under 20 to 100 atm. at 450 to 500°C. One of the X-ray diffraction diagrams of the products is shown in Fig. 1. can easily be noticed a remarkable split about the peak (400) in the spinel indice. The diagram about the (400) peak was examined by slow-scanning X-ray diffraction (Geigerflex, Ni filtered Cu $K\alpha$ 30 kV. 10 mamp. irradiation; 1° 1° 0.2 mm. slit system; rate meter, 16; time constant, 4 sec.; scanning speed, $1^{\circ}/2$ min.). The results of the products under various hydrothermal conditions are as shown in Fig. 2 and as summarized in Table I. Under such condition, 7-Al2O3 was more deformed tetragonally. The degree of deformation increased as

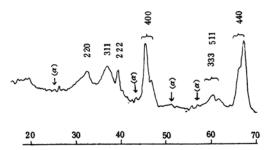


Fig. 1. $(\gamma - \text{Al}_2\text{O}_3 \text{ treated under 50 atm. at } 500^{\circ}\text{C}$ for 15 hr.) No. 9 (α) indicates $\alpha - \text{Al}_2\text{O}_3$.

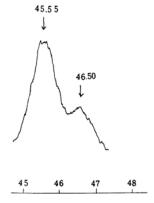


Fig. 2. (400) peak of $(\gamma - Al_2O_3$ treated under 100 atm. at 450°C for 13 hr.) No. 7.

¹⁾ G. Weitbrecht and R. Fricke, Z. anorg. Chem., 253, 9 (1945).

²⁾ F. Rinne, N. Jb. Miner., 58, 43 (1928).

³⁾ H. Jagozinski and H. Saalfeld, Z. Krist., 110, 197 (1958).

⁴⁾ J. H. deBoer and G. M. M. Houben, Proc. Intern. Symp. React. Solids, 237 (1952).

⁵⁾ E. Kordes, Z. Krist., 91, 193 (1935).

 ⁶⁾ G. W. Brindley and M. Nakahira, ibid., 112, 136(1959).
 7) B. C. Lippens, "Structure and Texture of Aluminas",

⁷⁾ B. C. Lippens, "Structure and Texture of Aluminas". Ph. D. Thesis of Tech. Hogeschool, Delft. (1961).

H. C. Stumpf, A. S. Russell, J. W. Newsome and J. W. Tucker, Ind. End. Chem., 42, 1398 (1950).

⁹⁾ H. Ginsberg, W. Hüttig and G. S. Lichtenberg, Z. anorg. Chem., 293, 204 (1957).

¹⁰⁾ R. Tertian and D. Papée, J. Chim. Phys., 55, 341 (1958).

¹¹⁾ H. Saalfeld, N. Jb. Miner., 95, 1 (1962).

Table I. Tetragonal deformation of γ -Al $_2O_3$ under hydrothermal condition

Specimen No. Treatment		2θ and d spacing, Å		Lattice constant, A			Damank	
		(400) and	(040) (004)	a=b=	c =	a/c	Remark	
1	Starting	3	45.72	(46.38)				
	Materia	11	1.983	(1.956)	7.93	(7.82)	(1.014)	
2	after B	. C.						
	Lippens	S ⁷⁾			7.96	7.82	1.018	
3	450°C	20 atm.	45.62	46.44				
	15 hr.	_	1.987	1.954	7.95	7.81	1.018	
4	450°C	20 atm.	45.51	(46.52)				
	20 hr.		1.992	(1.951)	7.97	(7.80)	(1.022)	
5	450°C	50 atm.	45.58	(46.45)				
	17 hr.		1.989	(1.953)	7.95	(7.81)	(1.018)	
6	450°C	50 atm.	45.40	(46.55)				
	45 hr.		1.996	(1.949)	7.98	(7.80)	(1.023)	
7	450°C	100 atm.	45.44	46.50				
	13 hr.		1.990	1.951	7.96	7.81	1.019	
8	450°C	100 atm.	45.32	46.58				
	18 hr.		2.000	1.948	8.00	7.79	1.027	
9	500°C	50 atm.	45.21	46.79				Fig. 1. Small
	15 hr.		2.004	1.940	8.02	7.76	1.033	amount of α - Al ₂ O ₃ included

TABLE II. TETRAGONAL DEFORMATION DECREASE DUE TO RE-HEATING IN AIR

Specimen	2θ and d spacing, Å		Lattice constant, Å			Domonic
No. Treatment	(400) and (040)	0) (004) 46.33	a=b=	c=	a/c	Remark cf. No. 3.
3' Heated No. 3	45.58					
at 800°C	1.989	1.958	7.95	7.83	1.015	ig. loss 3.3%
6' Heated No. 6	45.46	46.33				
at 800°C	1.993	1.958	7.97	7.83	1.018	cf. No. 6.
9' Heated No. 9	45.40	46.46				Fig. 2
at 800°C	1.996	1.953	7.98	7.81	1.022	ig. loss 7.6% cf. No. 9

the hydrothermal pressure became high and as the reaction period lengthened. Corundum α -Al₂O₃ was directly obtained from γ -Al₂O₃, while good crystalline γ -Al₂O₃ or δ -Al₂O₃ was not found in the present work.

The tetragonally-deformed γ-Al₂O₃ were re-heated in air at 800°C. The results are summarized in Table II. The degree of tetragonal deformation decreased with re-heating.

The present authors were able to prepare γ -Al₂O₃ with various degrees of tetragonal deformation. The lattice constant could not be determined precisely, for it varied with the conditions of formation. This led us to conclude that there may be γ -Al₂O₃ as an extrapolated form of γ -Al₂O₃ with little tetragonal deformation. Good crystalline γ -Al₂O₃ or δ -Al₂O₃ was not found under the hydrothermal conditions.

Department of Industrial Chemistry
Faculty of Engineering
The University of Tokyo
Hongo, Tokyo